If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=4Y^2+80Y
We move all terms to the left:
-(4Y^2+80Y)=0
We get rid of parentheses
-4Y^2-80Y=0
a = -4; b = -80; c = 0;
Δ = b2-4ac
Δ = -802-4·(-4)·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-80}{2*-4}=\frac{0}{-8} =0 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+80}{2*-4}=\frac{160}{-8} =-20 $
| 1/2x+3/4=7/10 | | 150=-10(6-m) | | (2b-1)=7 | | 3x=-4+7 | | Z^4-1=i | | 3x+2B=180 | | 90°=2x | | Y=6-18x | | 3(x+2)+4(2x+1)=6x=20 | | 4x²+3=-7x | | 3×+2y=30 | | 6+2a=10a | | 14x=6-12x^2 | | 2((1/x^2))-6(1/x)+3=0 | | 14x=6-12x | | 11+.3z/5=38 | | 5+47=x | | 1.1x-2.5=0.6x+1.1 | | 24/11=m÷8/13 | | 2(4x+3)+2(2x)=0 | | 2(4x+3)+2(2x)=18 | | P=2(4x+3)+2(2x) | | 12x/5=25 | | -28+42y=-49-35y | | 49+35y=28-42y | | 49+35y=28–42y | | -5=3/2(1)+b | | 77y=-21 | | -5=-3/2(1)=b | | 5f=f-8 | | 8a-6a=2a | | ((2a+8))/2=((6a+10))/4 |